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A cardinal symptom of major depressive disorder (MDD) is the dis-
ruption of circadian patterns. However, to date, there is no direct
evidence of circadian clock dysregulation in the brains of patients
who have MDD. Circadian rhythmicity of gene expression has been
observed in animals and peripheral human tissues, but its presence
and variability in the human brain were difficult to characterize.
Here, we applied time-of-death analysis to gene expression data
from high-quality postmortem brains, examining 24-h cyclic pat-
terns in six cortical and limbic regions of 55 subjects with no history
of psychiatric or neurological illnesses (“controls”) and 34 patients
with MDD. Our dataset covered ∼12,000 transcripts in the dorso-
lateral prefrontal cortex, anterior cingulate cortex, hippocampus,
amygdala, nucleus accumbens, and cerebellum. Several hundred
transcripts in each region showed 24-h cyclic patterns in controls,
and >100 transcripts exhibited consistent rhythmicity and phase
synchrony across regions. Among the top-ranked rhythmic genes
were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1
(REV-ERBa), DBP, BHLHE40 (DEC1), and BHLHE41(DEC2). The phas-
ing of known circadian genes was consistent with data derived
from other diurnal mammals. Cyclic patterns were much weaker
in the brains of patients with MDD due to shifted peak timing and
potentially disrupted phase relationships between individual circa-
dian genes. This transcriptome-wide analysis of the human brain
demonstrates a rhythmic rise and fall of gene expression in
regions outside of the suprachiasmatic nucleus in control subjects.
The description of its breakdown in MDD suggests potentially im-
portant molecular targets for treatment of mood disorders.
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Circadian patterns are 24-h rhythms in physiology and behavior
sustained by a biological timekeeping capability that has

evolved in most life on earth (1). In mammals, these rhythms are
controlled by a hierarchy of cellular oscillators, at the top of
which are pacemaker cells in the suprachiasmatic nucleus (SCN)
in the hypothalamus (2). Local oscillators throughout the body
coordinate daily cycles by integrating signals from the SCN with
other internal and external time cues. Within cells, rhythmicity
is maintained by transcriptional and posttranslational feedback
loops involving a set of “clock genes” (a brief overview is pro-
vided in SI Summaries and Discussions, Mammalian Circadian
Molecular Machinery). Recently, transcriptome-wide analyses
from animal tissues, such as blood, brain, liver, kidney, skeletal
muscle, and heart (3–6), have revealed that many genes beyond
the core clock genes undergo daily variations in expression levels.
The engagement of these additional circadian genes likely
reflects tissue-specific functional needs. Genetic and epidemio-
logical evidence suggests that disruption of circadian rhythms in
humans can lead to many pathological conditions, including
depression, metabolic syndrome, and cancer (7, 8).
Circadian control in the human brain is generally presumed

based on parallels with other mammalian brains. Indeed, sleep,
along with other cyclic events is among the most fundamental
processes regulated by the CNS and provides the backdrop for

all aspects of its function and dysfunction. Mood disorders rep-
resent a compelling example of dysregulation of circadian func-
tion, with many studies describing abnormal circadian rhythms in
hormonal, body temperature, sleep, and behavioral patterns in
major depressive disorder (MDD) (9). For example, patients
who have MDD show persistent shortening of rapid eye move-
ment (REM) latency (10), increased REM density, and decrea-
ses in total sleep time and sleep efficiency (11). In addition,
chronotherapeutic interventions can often alleviate depressive
symptoms (9, 12, 13).
However, direct demonstration of the molecular basis of cir-

cadian control in the human brain presents many unique chal-
lenges. Compared with in vitro systems or animal models, human
studies lack control of genetic or environmental variables, and
they pose major difficulties in collecting biologically relevant
samples. Previous analyses of human tissues involved easily ac-
cessible oral mucosa (14), skin biopsies (15), hair follicle cells
(16), and cultured cell lines (17, 18). Some human postmortem
brain studies have focused on a limited number of candidate
clock genes (19–21), but the overall orchestration of circadian
regulation of gene expression in the human brain and its po-
tential dysregulation in major depression remained unknown.
We addressed this problem by analyzing postmortem brain

tissues from subjects ordered around a 24-h cycle based on their
time of death (TOD), effectively treating the independently sam-
pled data points, one for each subject, as a pseudo-time series
spanning one cycle (Fig. 1A and Fig. S1). Our dataset covers
∼12,000 transcripts for each of six brain areas for 55 carefully
screened normal “controls” and 34 patients with MDD (di-
agnosed in accordance with the Diagnostic and Statistical
Manual of Mental Disorders, 4th Edition).
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Results
We first characterized circadian gene expression in the control
human brain. Experimental procedures are described in Materials
and Methods. At P < 0.05, there were 922 transcripts in the dor-
solateral prefrontal cortex (DLPFC), 417 in the amygdala (AMY),
444 in the cerebellum (CB), 565 in the nucleus accumbens
(NAcc), 566 in the anterior cingulate cortex (AnCg), and 659
in the hippocampus (HC). Fig. 1B shows a heat map of the 922
cyclic genes in the DLPFC, with the genes ordered by peak time
and the samples ordered by TOD. For each gene, the pattern
across samples (rows) has a characteristic phase. Meanwhile,
for each sample, the pattern across genes (columns) has a rise-
and-fall phase relationship typical of the subject’s TOD. Such
a TOD-specific pattern across cyclic genes can serve as the
basis of expression-based prediction of TOD for samples of
unknown TOD.
Many core clock genes, including aryl hydrocarbon receptor

nuclear translocator-like (brain and muscle Arnt-like protein-1)
[ARNTL (BMAL1)]; three Period homolog (PER1–3) genes;
nuclear receptor subfamily 1, group D, member 1 [NR1D1(REV-
ERBα)]; D-site of albumin promoter binding protein (DBP); and
basic helix–loop–helix family gene member e40 (deleted in
esophageal cancer 1) [BHLHE40 (DEC1)] and member e41
[BHLHE41(DEC2)], were among those showing the strongest
cyclic patterns (six examples are shown in Fig. 1C). They
accounted for the 5 highest ranked cyclic genes summarized over
six regions and 11 of the top 50 (highlighted in yellow in Fig.
2A). Notably, the top-ranked gene across all six brain regions was
ARNTL (BMAL1), a central component in the clock gene ma-
chinery (Fig. S2). Pathway analyses using several databases con-
sistently identified “circadian patterns” or “biological rhythms” as

the top pathways enriched among top cyclic genes (SI Summaries
and Discussions, Pathway Analysis, and Table S1).
Our data uncovered a staggered phase relationship between

the three Period genes, with PER1 peaking soon after sunrise,
PER3 peaking during midday, and PER2 peaking in the after-
noon (Fig. 2B). This stagger is highly characteristic of Period
genes in the SCN of rodents (Fig. S3) [e.g., mice (22), Arvicanthis
ansorgei (23), Octodon degus (24)], but it has not been demon-
strated in brain regions outside of the SCN, although it has long
been predicted (25). The detection of small phase differences in
this study was enabled by the sampling density of our pseudo-
time series data, because such subtle shifts may not be evident
when samples are collected at fixed, multihour intervals.
The strength of cyclic variation was consistent across brain

regions: P values for top genes were largely similar across the six
brain regions (Fig. 2A) and were quantitatively correlated (SI
Summaries and Discussions, Correlation of Statistical Signifi-
cance Across Regions and Fig. S4). To identify genes with
consistent cyclic patterns in six regions, we combined the P
values across regions using Fisher’s method (Materials and
Methods). The resulting “meta”-P values of the top 100–200 genes
were smaller P values than those expected under a uniform dis-
tribution, with 169 genes having a Benjamini–Hochberg false
discovery rate of <0.5 (Fig. 3A). Peak times (acrophase) for 445
transcripts with evidence of rhythmicity (P < 0.05) in at least two
regions were similar across regions (Fig. 3B). The estimated peak
hours for the top 50 genes are provided in Fig. S5. Similarly, the
amplitude of the cyclic pattern, defined as the difference between
the highest and the lowest points in the fitted sinusoidal curves,
was consistent across regions (Fig. 3C and Fig. S6).
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Fig. 1. Discovery of cyclic gene expression in the human brain: examples from the DLPFC. (A) TOD distribution in the controls (n = 52) and patients with MDD
(n = 33 in the DLPFC). TODs (zeitgeber time, ZT) were individually adjusted by sunrise time. (B) Heat map of expression levels for top (P < 0.05) cyclic genes (n =
922) in DLPFC samples of 52 control subjects. Genes are shown in the vertical direction and ordered by inferred phase, and samples are shown along the
horizontal direction and ordered by ZT across the 24-h day, where sunrise time is ZT = 0. Expression levels for each gene are rescaled by its observed SD. The
color scale represents 0.25-fold to fourfold of SD. Red indicates higher expression, and blue indicates lower expression. (C) Expression (Exp) levels of six known
circadian genes in samples ordered by TOD. P values and peak times are indicated above each panel. The red lines depict the best-fitting sinusoidal curves.
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Our dataset represents the largest transcriptome-wide re-
source to date for studying brain circadian patterns in any di-
urnal (day-active) species. We therefore compared our results
with those previously reported in animal studies, especially on
the nocturnal mouse. Yan et al. (5) performed a metaanalysis of
gene expression data from 14 mouse tissues and identified 41
common circadian genes. Among the 27 of these genes that were
found to be rhythmic in the mouse brain outside of the SCN (5)
and that were analyzed in our study, 8 (30%) overlapped with the
top 50 genes shown in Fig. 2 (marked with an asterisk). Four
more genes, TFRC (transferrin receptor), USP2 (ubiquitin

specific peptidase 2), NR1D2 (nuclear receptor subfamily 1,
group D, member 2), and CLOCK (circadian locomotor output
cycles kaput), ranked among the top 7% in our study. In all, 17
(63%) of the 27 genes were rhythmic (P < 0.05) in at least one
human brain region. A comparison of P values across the >5,000
genes that overlapped between our data on human subjects and
the mouse data from 14 tissues (5) showed that the greatest level
of concordance was found in canonical clock genes (SI Summaries
and Discussions, Comparison with Results from Animal Models and
Fig. S7). To identify human-mouse differences in phasing of
circadian genes, we compared peak times for genes reported
as rhythmic in mouse prefrontal cortex or in the whole brain
by Yan et al. (5) with those that had P < 0.01 in our study. The 7
top genes showed a linear relationship (Pearson’s r = 0.88, cir-
cular correlation coefficient = 0.61) between the human and
mouse data, but the phase in the mouse was delayed by ∼6.5 h

Symbol DLPFC AnCg HC AMY NAcc CB
ARNTL* 0.0005 0.0005 0.001 0.001 0.0005 0.0005
PER2* 0.001 0.0005 0.0005 0.005 0.008 0.0005
PER3* 0.0005 0.0005 0.0005 0.094 0.0005 0.001
NR1D1* 0.0005 0.0005 0.0005 0.102 0.0005 0.008
DBP* 0.0005 0.0005 0.003 0.066 0.002 0.001
SFPQ 0.0005 0.152 0.013 0.134 0.001 0.029
ITIH5 0.0005 0.021 0.009 0.577 0.007 0.027
LDLR 0.001 0.002 0.004 0.014 0.561 0.204
PER1* 0.0005 0.005 0.008 0.559 0.044 0.071
INSIG1 0.007 0.003 0.001 0.025 0.727 0.183

SLC39A14 0.007 0.0005 0.029 0.067 0.077 0.262
NFIL3* 0.011 0.0005 0.104 0.181 0.03 0.198
SNTB2 0.023 0.038 0.17 0.001 0.013 0.368
PDZRN3 0.002 0.001 0.037 0.333 0.207 0.195
BHLHE40* 0.0005 0.014 0.147 0.42 0.02 0.127
BHLHE41 0.005 0.003 0.997 0.751 0.051 0.003

HLF 0.124 0.06 0.464 0.0005 0.152 0.008
ETV5 0.019 0.059 0.014 0.083 0.01 0.213
TNIP2 0.601 0.003 0.023 0.0005 0.297 0.545
ESYT1 0.094 0.299 0.032 0.022 0.088 0.003
ZNF394 0.035 0.016 0.0005 0.301 0.17 0.456
PION 0.005 0.023 0.302 0.273 0.01 0.128
GPR6 0.005 0.0005 0.769 0.717 0.644 0.02

TIMM8A 0.132 0.007 0.001 0.089 0.346 0.654
GPR116 0.0005 0.508 0.014 0.481 0.192 0.058
FLRT1 0.297 0.017 0.069 0.219 0.002 0.145

CSGALNACT1 0.001 0.246 0.071 0.074 0.018 0.958
WDR41 0.111 0.231 0.007 0.338 0.001 0.369
APOLD1 0.036 0.021 0.032 0.187 0.007 0.796
RHOB 0.002 0.057 0.031 0.673 0.035 0.303
SCML1 0.043 0.003 0.065 0.103 0.047 0.726
SPRY4 0.0005 0.022 0.079 0.49 0.097 0.832
MTR 0.063 0.01 0.007 0.164 0.165 0.304

PLSCR1 0.252 0.017 0.061 0.124 0.01 0.117
EXOC1 0.029 0.04 0.059 0.221 0.011 0.246
KLF11 0.005 0.006 0.068 0.918 0.088 0.259

SLCO4A1 0.345 0.037 0.001 0.089 0.046 0.826
SOCS2 0.0005 0.05 0.032 0.684 0.104 0.769

C10orf116 0.006 0.203 0.014 0.615 0.876 0.005
ZNF286A 0.358 0.036 0.053 0.86 0.001 0.08
GAS2 0.023 0.262 0.424 0.001 0.029 0.639

UNC13A 0.006 0.273 0.19 0.29 0.004 0.148
ATP4A 0.206 0.096 0.182 0.08 0.401 0.0005
RFC3 0.739 0.044 0.001 0.105 0.248 0.072

ACOT13 0.009 0.016 0.023 0.362 0.15 0.344
C7orf68 0.127 0.019 0.004 0.288 0.048 0.475
SYNM 0.044 0.005 0.308 0.027 0.369 0.094
HCRTR2 0.119 0.161 0.013 0.863 0.314 0.001
ZW10 0.001 0.933 0.456 0.986 0.372 0.0005
NPAS2 0.143 0.227 0.355 0.821 0.018 0.0005
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Fig. 2. Characterization of the top cyclic genes in the human brain. (A)
Comparison of statistical significance for the top cyclic genes across regions.
Shown are P values of the top 50 genes across six regions, with the genes
ordered by the average logged P value across the six regions. The 11 gene
symbols that are highlighted in yellow were annotated as being part of the
circadian rhythm pathway in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) or the Protein Information Resource (PIR). Among the 41 “core cir-
cadian genes” reviewed by Yan et al. (5), 38 were on the microarray plat-
form used in our study and 8 (marked by *) overlapped with the 50 genes
shown here. In addition, 5 genes among the 38 (TFRC , NAMPT, USP2,
NR1D2, and CRY1) ranked among the top 5% in our study (ranked at 0.7%,
0.7%, 1.3%, 1.6%, and 4.2%, respectively). (B) Peak time of expression for
PER genes in our study follows what might be predicted by the animal lit-
erature. PER1 expression peaks 0–2 h after sunrise, PER2 peaks in the af-
ternoon, and PER3 peaks in the interval between PER1 and PER2 in all six
brain regions.
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Fig. 3. Top cyclic genes show consistent rhythmicity, phasing, and ampli-
tude across brain regions. (A) More than 100 genes exhibit consistently
significant rhythmicity. The quantile–quantile plot compares the distribution
of the combined P values across the six brain regions (using Fisher’s method)
and a uniform distribution, showing that 100–200 genes had smaller com-
bined P values than expected. The top 100 genes were colored in red, and
the next 100 genes were colored in green. Gray lines indicate the sorted
original P values in the six individual brain regions. The dotted red line indi-
cates uniformly distributed P values. (B) Phasing of the top cyclic genes is
consistent across brain regions, as indicated by a heat map of peak times.
Genes are ordered from top to bottom by mean peak time. Genes of non-
significant (P > 0.1) cyclic patterns in a given region were shown as missing
(gray) because their peak times could not be accurately determined. (C) Am-
plitude of rhythms is similarly consistent across brain regions, as indicated by
a heat map of the amplitude for 445 transcripts with P < 0.05 in at least two of
six regions. Genes are ordered from top to bottom by mean amplitude. (D)
Phasing of the top cyclic genes differs between species with different
chronotypes (day-active human vs. night-active mouse). Shown is a compar-
ison of peak times for genes that overlapped between a metaanalysis of
circadian gene expression in the mouse (5) and our study (P < 0.01 in con-
trols). The y axis shows the peak time in the mouse prefrontal cortex (PFR) or
whole brain (WB). The line in the plot models a linear relationship using the
7 top genes (highlighted in red). When fit with robust linear modeling, they
revealed a shift of 6.51 h and a slope of 1.18 (r = 0.88).
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(Fig. 3D), consistent with the idea that clock genes in non-SCN
regions (“local oscillators”) reflect the behavioral chronotype
of the species.
The identification of cyclic genes in controls allowed us to ask

whether these genes were also cyclic in patients with MDD. We
found that most of the top cyclic genes in controls were not
significant in MDD. Indeed, among the top 16 genes, 11 had P <
0.05 in four or more regions in controls (Fig. 2A), yet only 2 had
P < 0.05 in more than one region in patients with MDD and
none had P < 0.05 in more than three regions (Fig. 4A). In a
Fisher’s metaanalysis, P values in MDD were not appreciably
different from a uniform distribution (Fig. 4B), in contrast to the
increased significance of the top 100–200 genes seen in controls
due to between-region consistency. According to Fisher’s P val-
ues, the top 5 ranked genes in controls, ARNTL (BMAL1), PER2,
PER3, NR1D1, and DBP, ranked the 171st, 532nd, 10,191st, 27th,
and 684th, respectively, in patients with MDD. The decrease in
significance was paralleled by the reduction of amplitude of the
best-fitting sinusoidal curves (Fig. S8 A and B), even though the
overall variance for these genes was similar between the MDD and
control groups (Fig. S8C). By testing a subset of controls that (i)
have an equivalent sample size to the MDD group for each brain
region and (ii) have TODs that were matched as closely as possible
between the MDDs and the selected controls, we confirmed that
the weaker signal observed in the MDD group was not due to its
smaller sample size than the control group (SI Summaries and
Discussions, Effect of Sample Size in Comparison of Controls and
MDD Cases and Fig. S8 D and E).

The weaker cyclic patterns in MDD group could be due to (i)
a flattened or disrupted rhythmicity of the circadian genes in
patients with MDD or (ii) large time shifts of the rhythms in
many patients. In the latter scenario, patients with MDD could
still carry robust cyclic patterns (just as in controls) but their
actual phase at death might have deviated from what is expected
according to their recorded TOD. To test these hypotheses, we
first used the top cyclic genes (n = 108) to calculate sample-
sample correlations in the DLPFC and found a clear pattern of
positive correlations among control samples with similar TODs
and negative correlations between those with opposing TODs
(e.g., noon vs. midnight). This pattern was much weaker be-
tween patients with MDD and controls or among MDD cases
(SI Summaries and Discussions, Sample–Sample Correlations
Suggest Phase Shift in MDD Cases and Fig. S9), suggesting that
biological cycles for many MDD cases may have fallen out of
synchronization with the solar day. Next, we applied the con-
certed rise and fall of the top 100 cyclic genes in a training set of
60 randomly selected subjects, containing both cases and con-
trols (Fig. 1), to predict the likely TOD for each subject in the
remaining test set (Materials and Methods). The absolute devia-
tions of the predicted TOD from the recorded TOD were smaller
for controls than for patients with MDD (Fig. 4C; P = 0.012,
Mann–Whitney test), further suggesting that the circadian rhythms
of MDD cases were not synchronized (“entrained”) normally to
the solar day. Finally, if the cyclic patterns had persisted in
patients with MDD, we would expect in-phase genes to be pos-
itively correlated with each other and out-of-phase genes to
be negatively correlated. Importantly, this analysis of gene-gene
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DLPFC ACG HC AMY NACC CB
ARNTL 0.121 0.072 0.732 0.084 0.005 0.141
PER2 0.015 0.083 0.213 0.342 0.075 0.582
PER3 0.42 0.652 0.432 0.999 0.29 0.531
NR1D1 0.04 0.029 0.285 0.097 0.003 0.111
DBP 0.102 0.236 0.025 0.79 0.121 0.118
SFPQ 0.135 0.124 0.165 0.265 0.047 0.089
ITIH5 0.936 0.47 0.117 0.603 0.15 0.832
LDLR 0.012 0.385 0.315 0.307 0.005 0.028
PER1 0.006 0.21 0.137 0.619 0.124 0.061
INSIG1 0.056 0.534 0.668 0.869 0.318 0.88
SLC39A14 0.641 0.21 0.301 0.393 0.157 0.354
NFIL3* 0.565 0.326 0.633 0.478 0.179 0.617
SNTB2 0.928 0.194 0.123 0.765 0.365 0.293
PDZRN3 0.13 0.003 0.503 0.229 0.075 0.139
BHLHE40 0.19 0.897 0.433 0.963 0.14 0.009
BHLHE41 0.497 0.781 0.754 0.433 0.875 0.246
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Fig. 4. Disruption of cyclic pattern in patients with MDD. (A) Top 16 cyclic genes from controls are not rhythmic in the MDD group. The P values for the genes
are formatted similar to Fig. 2A (ranked by the average logged P value across the six regions in controls). (B) Genes in patients with MDD do not exhibit
consistently significant rhythmicity, as illustrated by a quantile–quantile plot comparing the combined P values across the six brain regions in MDD (using
Fisher’s method) vs. the expected P values in a uniform distribution using the same style as in Fig. 3A. (C) Rhythms of patients with MDD are less synchronized
with the solar day compared with controls. The predicted TOD in 55 controls (Left) and 34 patients with MDD (Right) are shown on the inner circle of a 24-h
clock, and their documented TODs are shown on the outer circle. The deviations were smaller in controls than in patients with MDD (P = 0.012, Mann–
Whitney nonparametric test). (D) Patterns of gene-gene correlations seen in controls (in-phase = positive correlation, out-of-phase = negative correlation) are
only partially present in patients with MDD. Depicted are the correlation coefficients across the top 16 genes, calculated using DLPFC data for 52 controls
(Left) and 33 MDD cases (Right). Genes are ordered by the peak time derived from the control dataset. Examples of gene pairs with significant differences
between controls and patients with MDD are marked with an asterisk.
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correlations across samples should be unaffected by how the sam-
ples were ordered and immune to any desynchronization be-
tween the “internal time” of the patients and the solar day. In
controls, we found that the top cyclic genes showed positive
correlations between genes with similar phases and negative
correlations between genes of opposing phases (an example
for the top 16 genes is shown in Fig. 4D). This pattern was
partially preserved in patients with MDD (Mantel statistic based
on Kendall’s rank correlation: 0.38, P < 0.001), albeit with no-
table alterations (Fig. 4D). Some normally in-phase gene pairs
(e.g., BHLHE40-PER2, DBP-PER3, with large correlations
shown in red) were out-of-phase in patients with MDD,
whereas some normally out-of-phase genes were in-phase in
patients with MDD [e.g., insulin-induced gene 1 (INSIG1)-
BHLHE41]. These results suggest that both scenarios may be in
play in patients with MDD: a disrupted regulatory relationship
among portions of the cyclic genes and shifted timing in
many patients.
The apparent disruption of the circadian clock could be due to

a number of biological causes, including the mood disorder itself,
the use of antidepressant drugs, or the presence of other non-
therapeutic drugs taken by the subject as ascertained by the toxi-
cology screen of the brains (Table S2). We explored several
variables and found that the TOD deviations of MDD cases were
not significantly different between suicide (n = 20) and nonsuicide
(n = 14) cases, with P = 0.62, or between the witnessed (n = 7)
and nonwitnessed (n = 27) deaths, with P = 0.72. We also examined
a group of patients (n = 10) who were highly homogeneous: They
had all died of suicide, had no known history of antidepressant
treatment (i.e., newly diagnosed for MDD), and had negative
findings on the postmortem toxicology screen. Thus, these patients
represent a “clean” group in which the primary difference from
controls is the diagnosis of MDD with suicide. Because members
of this group all died during the daytime, we compared them not
only with the entire group of controls but with the subset of
controls who died during the same daytime period. The average
TOD deviation for the 10 suicide/toxicology screen-negative
MDD cases is 3.3 h, which is larger than the average deviation
for the entire control group (1.9 h; P = 0.068, Kolmogorov–
Smirnov test) and from the average deviation of the daytime-
only controls (n = 30, 2.1 h; P = 0.038, Kolmogorov–Smirnov
test). These findings support the view that the circadian disruption
observed in this work is partially linked to the disease process itself
rather than being exclusively due to the impact of psychoactive
drugs. Meanwhile, the average deviation between predicted and
recorded TOD in this group (3.3 h) is lower than in the entire
MDD group (3.9 h, n = 34), suggesting that other factors,
including prescription and nonprescription drugs, may contribute
to the observed circadian dysregulation.

Discussion
Cumulatively, these results provide convincing evidence that there
exists a rhythmic rise and fall in the transcriptional activity of
hundreds of genes in the control human brain, initiating or
responding to the regulation of 24-h behavioral and hormonal
cycles. The data presented here are notable for their tran-
scriptome-wide coverage (∼12,000 transcripts) and large
sample size, encompassing 365 RNA samples from controls
isolated from six brain regions with sample sizes of 29–55 per
region and covering the daily cycle, with an average of 1.2–2.3
data points per hour. Despite these strengths, it was conceivable
that no consistently cyclic gene would emerge in our analysis due
to the numerous sources of noise in the independent subjects
design, both biological and technical. Indeed, even though there
was no clinical record regarding the state of consciousness of
control subjects at the TOD, many subjects might have been
awake or experiencing disrupted sleep. Despite these challenges,
over 100 genes showed consistent cyclic patterns across the six
regions (Fig. 3), reflecting the robust, slow-changing nature of
circadian rhythms in extra-SCN regions even in the presence
of environmental disturbances (2). The two regions with the

smallest sample size, the CB and AMY, showed the weakest
significance, suggesting that a larger sample size (≥55) could
reveal additional cyclic genes.
Two lines of evidence support the validity of our observations

in the normal human brain. First, several core circadian genes
essential to the clock machinery ranked as top cyclic genes in
each of the six brain areas, including ARNTL (BMAL1), PER1–3,
NR1D1 (REV-ERBα),DBP, and BHLHE40–41 (DEC1–2). Second,
the phase relationships between core circadian genes resembled
those found in model organisms. Indeed, the order of PER peak
expression (i.e., PER1, PER3, PER2) matched the pattern of PER
expression in the SCN of rodents, demonstrating a consistency in
phase relationships across mammalian species.
In addition to confirming the cyclic patterns of most known

circadian genes, this study revealed additional cyclic genes,
including, for example, LDLR (low-density lipoprotein receptor)
and INSIG1, which are known to be involved in lipid synthesis
and metabolism (26), and the hypocretin receptor, HCRTR2,
which is important for sleep/wake regulation (27). Because DNA
variations in several circadian genes underlie seasonal affective
disorder (28) and familial advanced sleep phase syndrome (29),
the cyclic genes described here may also serve as candidates for
genetic analyses of inherited disorders that involve dysfunction
of the circadian system. Moreover, this study provides the most
complete transcriptomic description to date for the brain of a
diurnal species, and it could serve as the knowledge base for future
efforts to define signaling pathways underlying basic chronotype
generation, a long-standing question in the field of chronobiology.
The present findings also offer empirical evidence of molecular

dysregulation of circadian rhythmicity across six brain regions of
clinically depressed individuals. Our analysis indicates that pa-
tients with MDD exhibit abnormal phasing of circadian gene ex-
pression and potentially disrupted phase relationships between
individual circadian genes. This disruption may have an impact on
the functional regulation of numerous neural processes and
behaviors, consistent with the broad range of symptoms seen in
MDD. A caveat in this analysis is that gene pairs that appeared
significantly disrupted in one region (e.g., DLPFC as shown in
Fig. 4D) are not necessarily disrupted in another region of the
brain of patients with MDD. Rather, some other gene pairs ap-
pear disrupted in that different region. This complexity could arise
from region-specific biological factors, with MDD conferring dis-
tinct patterns of transcriptional dysregulation in different brain
areas. However, the differential effects could also result from
technical factors (e.g., sample processing and microarray experi-
ments conducted separately by region). Thus, it is possible that few
gene pairs in the core machinery of circadian regulation were truly
uncoupled and that phase shifts played a primary role in giving rise
to the apparently dampened cyclic pattern in MDD cases. Finally,
the observed effect may also be due to clinical heterogeneity
among the subjects with MDD, with some patients exhibiting
faulty entrainment of an otherwise normally functioning circa-
dian machinery, whereas others have a more fundamental dis-
ruption of circadian regulation. As such, we can glimpse the
likelihood of multiple patterns of dysregulation within the de-
pressed group. Future studies, with larger MDD sample sizes,
are required to unravel the complex interplay of these factors
fully. Emerging approaches to mimic the biology of human
neural cells, such as induced pluripotent stem cells, together
with appropriate animal models (e.g. refs. 30, 31), may also prove
useful for uncovering molecular cascades associated with mood
dysregulation.
In sum, the current study identifies hundreds of genes in the

human brain that are likely involved in important daily rhythmic
events, including the sleep/wake cycle and metabolism. Using
this knowledge, we discovered that daily rhythms in these genes
are profoundly dysregulated in MDD. Although this disruption
can result from numerous factors, including the disease itself and
the patient’s drug history, we show that the dysregulation can
exist in the absence of any drug exposure. These results pave the
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way for the identification of novel biomarkers and treatment
targets for mood disorders.

Materials and Methods
Sample collection, including human subject recruitment and characterization,
tissue dissection, and RNA extraction, was described previously (32, 33). RNA
samples for different regions came from the same set of brains from 55
control subjects and 34 patients with MDD for whom the recorded hour of
death was available. Sample size varied by region: AnCg (n = 55 controls),
DLPFC (n = 52), CB (n = 34), AMY (n = 29), HC (n = 48), and NAcc (n = 51)
(Table S3). Tables S2 and S4 provide demographic and medical details for the
study subjects, including sex, age at death, ethnicity, agonal factor scores,
brain tissue pH, cause of death, and TOD. The brain tissues were of high
quality: All subjects died rapidly and had an agonal factor score of 0 (34),
with an average pH of 6.87 (SD = 0.23). We ran each sample on at least two
microarrays using Affymetrix U133-A or U133Plus-v2 GeneChips. We applied
robust multiarray analysis (35, 36) to summarize probe set expression levels,
using custom chip definition files, resulting in expression data for 11,912
ENTREZ transcripts. Microarray data for each region were analyzed separately.
All downstream analyses were performed in R (37). Details of the data pro-
cessing, including data cleaning and normalization, are provided in SI Mate-
rials and Methods. After data filtering, 1,424 microarrays remained,
corresponding to 776 unique RNA samples in six regions. The raw data and
processed data for the complete set of controls were deposited in the Na-
tional Center for Biotechnology Information Gene Expression Omnibus data-
base (accession no. GSE45642) and on our Web site (www.pritzkerneuropsych.
org/?page_id=1196).

We adjusted the recorded TOD for each subject by the sunrise time of his/
her date and place of death, and we used this zeitgeber time (ZT) scale for
downstream analysis. In the adjusted scale, sunrise time is ZT = 0, noon is
approximately ZT = 6, and midnight is approximately ZT = 18 (18 h after

sunrise) or −6 (6 h before sunrise). To detect potential cyclic patterns for a
given gene, we fit its TOD-ordered expression values to a sinusoidal function
with a 24-h period, with phase and amplitude as free parameters, and cal-
culated the percentage of variance explained (PVE) as a goodness-of-fit in-
dex. By comparing the observed PVE for each gene with its null PVE
distribution in 1,000 TOD-randomized datasets, we assigned empirical P
values and identified transcripts with small P values as candidate cyclic
genes. To quantify the overall rhythmicity across regions, we combined
the P values from six regions using Fisher’s method (SI Materials and Methods,
Fisher’s P, Phase, and Pathway Analysis). To identify phase, or peak time, we
calculated the correlation coefficient of the actual data series for each gene
with a family of 24 sinusoidal functions that are shifted by 1 h. The maximal
correlation coefficient indicates the estimated peak time. For functional
analyses, we referred to “known circadian genes” as those documented by
KEGG (38) and PIR (39) databases.

Enrichment analysis relied on online tools at the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (40) and Pathway Analysis
Using Logistic Regression (LRpath) (41). Prediction of TOD is described in SI
Materials and Methods, Prediction.
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Samples andMicroarray Data Collection. Sample collection, including
human subject recruitment and characterization, tissue dissection,
and RNA extraction, was described previously (1, 2). Briefly, hu-
man subjects were recruited by the Brain Donor Program at the
University of California, Irvine. Brain tissue was obtained with the
consent of the next-of-kin of the deceased. Information obtained
from medical examiners, coroners, medical records, and in-
terviews of relatives was combined to record physical health,
medication use, psychopathology, substance use, and details of
death. To ensure the accuracy of psychiatric evaluation of the
control subjects and the subjects with major depressive disorder
(MDD), we relied not only on the subject’s medical records but
on a next-of-kin interview and a 141-item questionnaire admin-
istered to a family member. To minimize the confounding ef-
fect of agonal stress on gene expression, we assessed the
agonal factor score (AFS) for each subject, defined as the
degree of severity and duration of physiological stress at the
time of death (TOD) (3). All subjects who were analyzed in
this study had rapid death (i.e., occurred within 1 h) and an
AFS of 0. The controls had no psychiatric or neurological
disorders, substance abuse, or any first-degree relative with
a psychiatric disorder. Patients who had MDD received a con-
sensus diagnosis based on criteria from the Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition.
Frozen coronal slabs of the brain were dissected to obtain tissue

samples for specific regions. Total RNA was isolated and dis-
tributed to multiple Pritzker Consortium laboratories for repli-
cate experiments. The microarray experiments were conducted at
separate laboratories at three of the universities involved in this
study: University of Michigan; University of California, Irvine;
and University of California, Davis. RNA samples were analyzed
on multiple microarray platforms, and in this work, we focused on
Affymetrix GeneChip data from high-quality tissue (Table S3).
Samples for different regions came from the same set of brains
from 55 control subjects (Table S4). This group included 10 fe-
male and 45 male control subjects, with an average age of 55.8 y
(SD = 13.9). The brain tissues had an average pH of 6.87 (SD =
0.23). Only two samples had a pH <6.5 (samples 6.4 and 6.3).
However, some brain samples generated RNA only for a subset
of regions (regions 3–6); as a result, different regions were ana-
lyzed with varying sample size (n = 29–55). Microarray experi-
ments were performed in separate experimental cohorts, ranging
from five to eight cohorts depending on the brain region. Each
cohort contained a mixture of cases and controls, with most
RNA samples analyzed in duplicate at two laboratories (some
were analyzed in three laboratories). All laboratory procedures
for running the Affymetrix GeneChips followed the manu-
facturer’s standard labeling and hybridization protocols. The
generation of probe-level intensity data (i.e., the .cel files) relied
on standard Affymetrix library files, and these data were further
processed using a custom annotation file (see below). Attributes
files containing annotated clinical and sample quality in-
formation were maintained in an internal database.
Whereas this study focused on a subset of normal controls with

TOD data [anterior cingulate cortex (AnCg; n = 55 controls),
dorsolateral prefrontal cortex (DLPFC; n = 52), cerebellum
(CB; n = 34), amygdala (AMY; n = 29), hippocampus (HC; n =
48), and nucleus accumbens (NAcc; n = 51)], a larger set of
control samples is available that includes samples both with and
without accompanying TOD data (70 AnCg, 83 DLPFC, 51 CB,
32 AMY, 63 HC, and 66 NAcc samples).

Information for the 34 patients with MDD (27 male and 7 fe-
male) is included in Table S2. The mean pH value was 6.91 (SD =
0.27). The mean age of the patients with MDD was 46.3 y (SD =
15.1). There were no significant differences between the control
and MDD groups for pH values (P = 0.429). Twenty (59%) of the
34 patients with MDD died by suicide, 11 (32%) by naturally
occurring sudden cardiac death, and 3 (9%) by multidrug over-
dose of undetermined cause (either suicide or accidental).
Toxicology screens were performed by the coroner’s office,

following a standard protocol in which bodily fluids (blood,
urine, ocular fluid, or spinal fluid) were submitted for in-house
screening across a panel of ∼140 compounds. On positive screen-
ing results, a case-specific screen was ordered at the discretion of
the county medical examiner to be completed at a commercial
laboratory (NMS Labs, Inc.) for more quantitative measurements
in a similar panel of 140 compounds. Samples submitted to the
commercial laboratory were homogenized, archived brain tis-
sue. The specific panel performed was Postmortem Toxicology-
Expanded, Tissue (Forensic) Test (8052TI). Assays included head-
space GC, ELISA, GC/MS, and colorimetry. Results are shown in
Table S2. Results for 15 (44%) subjects with MDD were negative;
of the remaining 19 (56%) positive cases, 4 (12% of the 34 cases)
had lethal doses or lethal combinations of drugs, whereas the
other 15 (44%) had treatment drugs within therapeutic levels.
The raw data and processed data for this complete set of controls

were deposited in the National Center for Biotechnology Infor-
mation Gene Expression Omnibus (accession no. GSE45642) and
on our Web site (www.pritzkerneuropsych.org/?page_id=1196).

Data Processing. Data for each brain region were processed sep-
arately, using both cases (including MDD, bipolar disorder, and
schizophrenia) and controls, although the analyses of circadian
patterns focused only on the normal controls and patients with
MDD because these are the two groups with sufficient TOD data.
The reason to include both cases and controls in data processing
was to conduct normalization and batch-effect correction (see
below) using all samples in a batch, such that we maximized the
accuracy when correcting for technical variations across batches.
Although most cohorts were analyzed on an Affymetrix U133A

platform, several of the latest cohorts were analyzed on the newer
Affymetrix U133Plus-v2 platform, which contains all U133A
probe sets as a subset. We extracted the U133A subset of the data
for these samples and combined it with data for those samples
analyzed on the U133A platform. We applied robust multiarray
analysis (RMA) (4, 5) to summarize probe set expression levels.
RMA output in the form of logged (base 2) expression levels was
generated using the custom ENTREZ12.1 chip definition files
(CDFs) (6), which defined probe sets for 11,912 ENTREZ
transcripts and 68 control probe sets. The reason for using our
custom-defined CDFs rather than the probe annotation provided
by Affymetrix was to remap all probes to the latest human ge-
nome build available and to annotate probes according to one of
the most detailed gene models. The RMA results in this study
thus represented 11,912 transcripts defined by ENTREZ in
March 2010 and are covered by probes on the U133A micro-
arrays. All downstream analyses were performed in R (7) using
contributed packages available in early 2010.
Based on our prior experience in finding sex-specific transcripts

in the human brain (8), we used 10 genes on the Y chromosome
(NLGN4Y (neuroligin 4, Y-linked), NCRNA00185 (non-protein
coding RNA 185), RPS4Y1 (ribosomal protein S4, Y-linked 1),
TTTY15 (testis-specific transcript, Y-linked 15), UTY (ubiquitously
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transcribed tetratricopeptide repeat gene, Y-linked), KDM5D [lysine
(K)-specific demethylase 5D], USP9Y (ubiquitin specific pepti-
dase 9, Y-linked), CYorf15B (chromosome Y open reading
frame 15B), DDX3Y [DEAD (Asp-Glu-Ala-Asp) box poly-
peptide 3, Y-linked], EIF1AY (eukaryotic translation initiation
factor 1A, Y-linked)) and XIST [x (inactive)-specific transcript]
on the X chromosome to infer sample sex. The analysis revealed
that of >1,400 microarrays, only six NAcc samples involving
two subjects had reciprocal sex switches in the database. These
cases of sex misidentification were corrected. There is no evi-
dence of sample mixing (i.e., inadvertently combining two sam-
ples) that involve a male-female sample pair, although our data
could not rule out the unlikely possibility of same-sex mixing or
switching.
To gain an overview of sample heterogeneity, we calculated

sample-sample similarities for each region using pairwise
Pearson’s correlation coefficients (r) and calculated the average
r of each sample compared with all other samples of the same
region. We chose the threshold of average r = 0.85–0.94 (varying
by region) to define and remove outlier microarrays. The outliers
could result from either technical or biological differences. In
one region (DLPFC), we removed additional microarrays cor-
responding to data produced at one laboratory for one cohort
due to a low average r and poor match with the duplicate mi-
croarrays from the second laboratory. In all, we filtered out 52
(∼3.5%) of 1,476 microarrays. The remaining 1,424 microarrays
correspond to 776 unique RNA samples in six regions (Table S3).
Although the RMA method has normalized probe intensity

distributions across microarrays, the resulting probe set summaries
still showed between-cohort, between-microarray type (U133A
vs. U133 Plus v2), and between-laboratory variations, thus
requiring further normalization. For each brain region, we
quantile-normalized (9) the probe set values and used pairwise
correlation coefficients to define recognizable batches (10),
which usually coincides with naturally occurring sample groups
(>15 samples) according to cohorts or chip types. The 68 neg-
ative control probe sets on the microarray platform, representing
spiked-in nonhuman transcripts, showed nearly identical batch
effects as using all probes, indicating that most of the batch
variation is due to technical differences in reagents and instru-
ments rather than due to biological differences between samples
in different batches. To adjust for batch effects, we median-
centered the expression levels of each transcript within each
batch and confirmed, using the correlation matrices, that the
batch effects were removed after the adjustment.
We compared the result of this simple correction with the

alternative Bayesian batch-correction approach implemented in
combat (Combining Batches) (11), and we did not see mean-
ingful differences in performance in terms of duplicate-sample
concordance. Although this is contrary to the published com-
parison results showing that combat is a better algorithm for
dealing with batch effects (11), its advantage is probably blunted
in our dataset because (i) we have larger sample sizes per batch
(typically >15) than what was tested in the published compar-
isons, and (ii) we used median centering rather than mean
centering. The latter is susceptible to the influence of outlier
values yet was used in earlier comparisons with combat. We note
that combat has decreased the scale of variation for most tran-
scripts (as a consequence of improving the group variance esti-
mation) and resulted in underreporting of fold changes between
sample groups. We therefore opted to maintain the use of the
median-centering approach in this study.
After per-batch median centering, we quantile-normalized the

resulting values and averaged the replicate microarrays for the
same samples, yielding a dataset for unique subjects for each
region. The RMA-normalized data and the final processed data
are available (www.pritzkerneuropsych.org/?page_id=1196). Al-
though the subjects were selected with no agonal complications

(2) (Tables S2 and S4), there remains a moderate influence of
expression patterns by brain pH, reflecting residual effects on
gene expression due to medical conditions before death. To cor-
rect for this, we ran linear regression of expression levels against
the first principal component (PC) 1 scores of the subjects, using
the residuals for downstream analysis. In some brain regions (HC
and NAcc), both PC1 and PC2 scores were associated with
pH, and we ran linear regression against both.
Because the male and female subjects were not distributed

evenly in their TOD around the 24-h day, our subsequent analysis
was biased toward finding sex chromosome genes as showing
circadian patterns. We therefore median-centered the male and
female expression values as an additional step in data processing.
This procedure primarily affected the small set of sex-specific
transcripts (approximately eight chromosome Y transcripts and
Xist on chromosome X). The regression with PC1 scores and sex
correction each results in the reduction of only 1 df. Similarly,
quantile normalization is a nonlinear rank-invariant transforma-
tion of the data. The procedures described above therefore rep-
resent relatively mild adjustments. Batch correction, on the other
hand, represents a stronger adjustment, especially for batches of
fewer samples.

TOD and Zeitgeber Time. To collect TOD data, deputy coroners
first determined the span between time last seen alive and time
found. Coroner deputies then collected a combination of data,
including core temperature changes, neurological and cardio-
vascular changes (pupil dilation, clotted blood, pallor-pale/white,
mucous membrane dryness, recent incontinence, tendon reflexes,
clouded cornea, cadaveric spasm, dried blood, and tympanic ab-
domen resonant), rigor mortis onset (in jaw muscles, neck, fingers,
wrists, elbows, shoulders, knees, and abdomen), and stages of li-
vidity (e.g., blanches easily, blanches moderate pressure, blanches
firm pressure, blanches fixed). Among recent deaths (<20 h), the
combined use of these data reliably estimates TOD, accurate ±1 h
in the first 6 h postmortem and ±1.5 h between 6 and 20 h
postmortem (12–14). All control and MDD cases used in this
study were found at less than 11 h postmortem, thus increasing
the reliability in the determination of TOD. Estimates were re-
viewed by a board-certified forensic pathologist, compared with
findings from internal forensic examination, and either confirmed
or modified.
Not all subjects have documented TOD information. Only

those with TOD data were included in the circadian analysis. It is
known that the circadian phase in humans, as well as in other
species, is synchronized to geophysical timemainly via photic cues
perceived by the retina (15). Because the sunrise time varies by
season and by latitude (Fig. S1), we adjusted the recorded TOD
for each subject by the sunrise time of his or her date and place
of death, and we used this zeitgeber time (ZT) scale for down-
stream analysis. In the adjusted scale, sunrise time is ZT = 0,
noon is approximately ZT = 6, and midnight is approximately
ZT = 18 (18 h after sunrise) or −6 (6 h before sunrise).

Discovery of Cyclic Genes. Our subjects show an uneven distri-
bution of TOD (Fig. 1 A and B), precluding the use of standard
methods intended for regular time series analysis (i.e., those
involving constant intervals), including frequency domain anal-
yses, such as the Fourier transformation. To discover cyclic
genes, we fit the expression values of each gene by a sinusoidal
function of time using the method of least squares, fixing the
period at 24 h, and allowing the amplitude and phase to be
free parameters:

Yi = Acos
2π ×ZTi

24Hr
+Bsin

2π ×ZTi

24Hr
: [S1]

In the expression above, Yi is the expression level of the ith
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subject, whose adjusted TOD is ZTi, and A and B jointly de-
termine the amplitude and phase, respectively, of the sinusoidal
function. At the best-fitting parameters (A, B), we calculated the
percentage of variance explained (PVE) by the fitted curve and
evaluated its statistical significance by permutation (16). We
randomly reassigned the ZT data across subjects 1,000 times and
calculated the PVE for each round of permutation, thus ob-
taining a null distribution of 1,000 PVE values. The empirical P
value of the actual PVE is obtained by comparing it with the null
distribution. For example, when the actual PVE is larger than all
but 1 of the 1,000 permutation PVEs, P = 0.001. When it is
larger than all 1,000 permutation PVEs, the P value is between
0 and 0.001 but undetermined, and we used P = 0.0005 when we
needed to average the logged P values across six regions.
It was necessary to fix the period at 24 h because the post-

mortem sampling times are limited to one 24-h cycle. Data such as
ours are not amenable to discovering changes in the period of
cyclic patterns. For example, if a transcript shows a lengthening of
its period from 24 to 30 h in a study cohort, after sampling each
subject only once and “folding” all data into the 0- to 24-h range,
it is impossible to infer that the transcript has a longer than 24-h
period. This limitation applies to all studies using independently
sampled data.

Fisher’s P Value, Phase, and Pathway Analysis. For each transcript,
we combined the P values from six regions using Fisher’s formula:

χ2 = ð−2Þ
X6

i= 1

logð piÞ; [S2]

where pi is the P value in region i, and the χ2 statistic follows a χ2
distribution with 12 df (2 * 6 brain regions), assuming indepen-
dence (lack of consistency) across regions. This analysis is not
intended as a formal test of overall significance or as a test for
independence among regions but as a way to explore the degree
of consistency among top genes. For technical reasons, some data-
sets (a certain region, in either controls or patients with MDD)
may show systematic “inflation” or “deflation” of P values across
the entire transcriptome. The P value inflation/deflation is likely to
arise from technical differences affecting entire arrays that are
unevenly distributed around the 24-h cycle, leading to apparently
cyclic patterns affecting thousands of genes. This artifact is anal-
ogous to the phenomenon of population stratification in genetic
association studies; thus, we adopted a correction method similar
to the genomic control method (17). This method converts P
values into a χ2 statistic, finds the median of this statistic, and
calculates the genomic control factor as the fold difference be-
tween the observed median and the expected median of a χ2
distribution (df = 1). We then rescaled the χ2 values by the
genomic control factor and turned the corrected χ2 values into
the corrected P values. This was done for each region before
calculating the Fisher’s metaanalysis P value.
To identify phase, or peak time, we calculated the correlation

coefficient of the actual data series for each gene with a family of
24 sinusoidal functions that are identical in shape but shifted by
1 h. The highest of the 24 correlation coefficients indicated the
best-fitting curve in the family of 24 functions, thus providing the
estimated peak time with a resolution of 1 h. All phase com-
parisons were conducted using circular statistics (in the “circular”
package in R) to account for the artificial disconnect between
ZT0/24 (also referred to as the “around the clock problem”).
For functional analyses, we referred to “known circadian genes”

as those documented by the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (18) and Protein Information Resource (PIR)
databases (19). These did not include those identified in previous
transcriptome analyses of specific organisms and tissues.

Enrichment analysis relied on online tools at the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) (20) and Pathway Analysis Using Logistic Regression
(LRpath) (21), using gene symbols and ENTREZ identifications,
respectively. The Web sites are http://lrpath.ncibi.org/main.jsp
and http://david.abcc.ncifcrf.gov/summary.jsp, as implemented in
October 2011.

Prediction.Prediction of TODused the top 100 genes according to
the Fisher’s metaanalysis P value from the control dataset and
relied on a PC analysis of the expression matrix for these genes
in n training samples, where the samples were ordered by TOD
(similar to Fig. 1C but with p number of genes). In this matrix,
the expression values followed a wave-like form in both the x and
y directions (i.e., over the different samples, ordered by TOD,
and over the different genes, ordered by normal peak time). The
first two eigenvectors (each a p-vector, across p genes) typically
describe a sine function and a cosine function, respectively, for
canonical peak-at-noon (maximum at ZT ∼ 6) and peak-at-
morning (maximum at ZT = 0) patterns, respectively. The relative
loading of the two eigenvectors in each sample, as described by
the sample’s first two eigenvalues, A and B, reflects the sample’s
peak time and is used to calculate the predicted TOD. Spe-
cifically, when the ith sample’s expression vector, Yi, can be
expressed approximately as the sum of two components
(similar to Eq. S1):

Y i ≈Ai *PC1 +Bi *PC2; [S3]

where PC1 and PC2 are the first two eigenvectors. After they are
verified as describing the sine and cosine functions, respectively,
the quantity Ai/Bi (i.e., the ratio of the first two PC scores for
each sample) is turned into the “angle” in the 24-h polar co-
ordinate using the “arctangent” function:

Predicted TOD ðhourÞ=
tan−1

�
Ai

=

Bi

�
*

24
ð2 * PiÞ ; B> 0

tan−1
�
Ai

=

Bi

�
*

24
ð2*PiÞ+ 12; B< 0

:

[S4]

To avoid the potential bias in using the control patterns to
predict TOD for patients with MDD, we combined the MDD
cases and the controls in an undistinguished pool. We then re-
peatedly sampled 60 subjects from the pool, deriving PCs from
this training set and using PC1 and PC2 (the first two eigen-
vectors) to predict TOD for the remaining MDD cases and
controls, which form the test set (n = 20–29, depending on brain
region). After 50 iterations, we averaged the predicted TOD for
each sample as it appeared in the training set. We ran this analysis
for the four regions with larger sample sizes (n = 85 for DLPFC,
n = 89 for AnCg, n = 80 for HC and NAcc) and averaged TOD
across the four regions to obtain the final predicted TOD for each
subject.

SI Summaries and Discussions
Mammalian Circadian Molecular Machinery. To aid the understand-
ing of our study by general readers, we provide a brief overview of
the current knowledge of circadian clock machinery. The circa-
dian clock represents an evolutionary conserved regulatory process
controlling the rhythmic expression of genes involved in a wide
array of physiological and behavioral activities, including the sleep/
wake cycle, body temperature, hormonal secretion, and behavior.
At the intracellular level, rhythmicity is generated by interlocking
transcriptional and translational feedback loops involving a set of
“core clock genes” that are conserved in most animals. We ex-
pand on the transcriptional regulation of these core clock genes
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below, because 11 of these genes were discovered to be among
the most rhythmic transcripts in the human brain (Fig. S2).
The core clock gene loop that generates 24-h periodicity centers

around rhythmic transcriptional regulation at the E-box DNA
binding site. This loop includes three Period genes (PER1, PER2,
and PER3); two cryptochrome genes (CRY1 and CRY2); CLOCK
(or its homolog neuronal PAS domain-containing protein 2 or
NPAS2), two aryl hydrocarbon receptor nuclear translocator-like
genes (ARNTL and ARNTL2, also referred to as BMAL1 and
BMAL2), and two basic helix-loop-helix family genes, members
e40 and e41 (BHLHE40/41, also referred to as DEC1 and
DEC2). Within the positive limb of this feedback loop, CLOCK
and ARNTL proteins form heterodimers that bind to E-box
sequences to drive the transcription of PER, CRY, and
BHLHE40 and BHLHE41 mRNAs. Negative feedback occurs
when the PER and CRY proteins accumulate and dimerize in
the cytoplasm and then translocate to the nucleus, where they
bind to CLOCK/ARNTL to inhibit their own transcription.
Rhythmicity is generated as a consequence of this feedback
loop, which has an inherent tempo governed by the delayed
activation and repression around the loop as determined by
posttranscriptional/posttranslational modification (22, 23).
This primary loop is accompanied by two secondary loops that

center around rhythmic transcriptional regulation at two other
DNA binding sites, the D-box and REV-ERB/retinoid-related
orphan receptor (ROR) response element (RRE). These second-
ary loops serve to stabilize and amplify the primary loop. One loop
involves a set of transcriptional activators for the D-box: D-site
of albumin promoter binding protein (DBP), thyrotroph embry-
onic factor (TEF), and hepatic leukemia factor (HLF). The other
loop includes a set of transcriptional activators and repressors for
the RRE, the ROR genes (RORα/β/γ), and nuclear receptor sub-
family 1, group D genes (NR1D1 and NR1D2, also referred to as
REV-ERBα/β). In general, the transcription of these gene families
is driven by ARNTL/CLOCK via E-box sequences. The D-box
activators then further drive PER transcription, as well as the
transcription of RORα/β/γ and NR1D1/2. Finally, activation of
the RRE feeds back to drive the transcription of ARNTL/CLOCK,
as well as the transcription of the nuclear factor interleukin-3–
regulated gene (NFIL3, also known as E4BP4), which encodes
a transcriptional repressor that binds at the D-box sequence
(24) and may further regulate PER and CRY proteins (25).
This regulatory system, along with epigenetic processes, controls
the expression of multiple downstream, or “clock-controlled,”
genes (26).

Pathway Analysis. To detect biological themes represented by the
cyclic genes systematically, we ran an enrichment analysis of the
top 600 cyclic genes using Database for Annotation, Visualiza-
tion, and Integrated Discovery online tools (DAVID) (20). These
genes were selected based on their mean log-P value across six
regions. Different annotation systems of gene function showed
remarkably consistent results:

� The top-scoring Uni-Prot and PIR keyword is “biological
rhythms,” which includes 8 genes (HLF, NPAS2, CRY2, DBP,
PER2, PER1, PER3, and NFIL3) among the top 600, with an
enrichment P value of 1.35E-6.

� The top-scoring KEGG pathway is the hsa04710:Circadian
rhythm pathway, with 9 annotated genes (NPAS2, CRY2,
NR1D1, PER2, PER1, BHLHE40, ARNTL, PER3, and
BHLHE41) in the top 600, with an enrichment P value of
6.1E-9).

� The top-scoring Gene Ontology term is GO:0048511:rhythmic
process, with 15 genes (HLF, FGF7, ARNTL, CCNE1, NPAS2,
CRY2, NR1D1, DBP, PER2, PER1, NOS3, ADAMTS1, PER3,
NFIL3, and FSHB), with an enrichment P value of 1.56E-5.

We also adopted a logistic regression-based analysis method,
LRpath (21), that does not require an arbitrary cutoff of top
genes. We used P values for all >11,000 genes to screen pre-
annotated gene sets in the Biocarta, Gene Ontology, KEGG, and
Panther pathways, and we consistently found circadian rhythm to
be the top “concept” (Table S1). Several other gene sets po-
tentially related to circadian transcription, such as “PAS fold,”
“basic region leucine zipper,” “sequence-specific DNA binding
transcription factor activity,” and “helix–loop–helix DNA-binding
domain,” also had an enrichment false discovery rate of less
than 0.05.

Correlation of Statistical Significance Across Regions. The P values
for top genes were correlated across regions (Fig. S4A), and the
average ranks of P values for the most significant genes were
smaller than the average ranks of the top genes in order-
permutated datasets (i.e., those without region-region correlation)
(Fig. S4B). We estimated that there were >100 genes showing
consistent cyclic patterns across regions: If we removed the 100
genes with the lowest median rank (lower rank = smaller P value)
across regions, the remaining genes would have average ranks
much more similar to those in permuted datasets (Fig. S4C).

Similarity of Peak Time (i.e., Phase) Across Regions. The circular
variance of peak times across six regions had a median of 0.089 h
over 445 genes that were cyclic (P < 0.05) in at least two brain
regions, indicating that circadian rhythms are relatively syn-
chronized among the six extra-SCN regions analyzed. As expected,
the smaller the mean P value (i.e., more robust and consistent
cyclic patterns), the smaller were the circular variance of peak
times, resulting in a median of 0.052 h for the top 50 most
significant genes (Fig. S6A). There was no evidence of systematic
phase shift between any pairs of regions, as determined by
pairwise comparisons of peak times across top cyclic genes at
various P value cutoffs.
There is a general trend that genes with higher amplitude are

more likely to show smaller P values (Fig. S6B). This can be
explained by the fact that genes with smaller circadian amplitude
would be less likely to rise above noise and be detected.

Comparison with Results from Animal Models. We compared our
results for human non-SCN regions with those from previous
animal studies regarding the significance and phasing of circadian
genes. Yan et al. (27) performed a metaanalysis that included
gene expression data from 14 mouse tissues and reported 41
“core circadian genes,” of which 27 were on the microarray
platform used in our study and were rhythmic in the mouse
brain outside the SCN (prefrontal cortex or whole brain).
Fig. S6 shows the comparisons of P values for the ∼5,730 genes

shared between the two studies when all the 14 tissues of the
study by Yan et al. (27) are included. The 9 most significant
genes in our study are highlighted in red (Fig. S7). Six of the 9
genes had a P value <0.01 in the mouse study, suggesting that the
greatest level of concordance between the human and mouse
data was found in canonical clock genes.
Because humans are a diurnal (day-active) species and most

traditional laboratory rodents are nocturnal, our data provide an
opportunity to compare the phase of circadian patterns in species
with different chronotypes. When we compared the peak times
for genes reported as rhythmic for the mouse prefrontal cortex or
whole brain in the study by Yan et al. (27) and had P < 0.01 in our
study (Fig. 3D), the seven top genes showed a linear relationship
between the human and mouse data, but with a shift such that
the phase in the mouse is delayed by ∼6.5 h relative to the human.
When fit with robust linear modeling (using rlm in R), they re-
vealed a shift of 6.51 h and a slope of 1.18 (r = 0.88; circular
correlation coefficient = 0.61). For example, NR1D1 peaks at
ZT = 2 (2 h after sunrise) in our data for the human brain and
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peaks at ZT = 9.8 in mouse prefrontal cortex tissues [in the study
by Yan et al. (27), ZT = 0 is 7:00 AM, similar to our definition of
ZT = 0 as sunrise time]. In addition, transcripts for the Period
genes peaked during the day in our data (Fig. 2B), as has been
previously reported in the human cingulate cortex (28) and in
similar cortical and limbic brain regions in other diurnal species,
such as Spermophilus tridecemlineatus (29) and Octodon degus (30).

Staggered Phase Pattern in Three Period Genes. In our dataset, the
peak times of the three Period genes were staggered, with Per1
peaking soon after sunrise, Per3 peaking during midday, and Per2
peaking in the afternoon (Fig. 2B). A similar staggered phase
relationship is highly characteristic of Period gene expression in
the SCN of laboratory rodents (Fig. S3) [e.g., mice (31), Arvicanthis
ansorgei (32), O. degus (30)], but it has not been observed out-
side of the SCN, perhaps because the detection of such a re-
lationship requires densely spaced sampling points around the
24-h day instead of data collected in two (e.g., ref. 27) or four (e.g.,
refs. 33–35) binned time points.

Effect of Sample Size in Comparison of Controls and MDD Cases.
Because there were more control subjects than MDD cases in
our sample collection, we asked whether the larger sample size
and specific TOD distribution in controls could partially explain
the much weaker evidence of circadian pattern in MDD cases. To
answer this question, we selected a subset of controls so that (i)
we had an equal number of controls as patients with MDD for

each brain region and (ii) the TODs were matched as closely as
possible between the patients with MDD and the selected con-
trols. The sample sizes for the selected controls are as follows:
34, 33, 14, 13, 32, and 29 in the AnCg, DLPFC, CB, AMY, HC,
and NAcc, respectively. The AMY and CB were not analyzed
further due to small sample sizes. The P values for the other four
regions remained much more significant in the matched subset of
controls than in the patients with MDD (Fig. S8 D and E), con-
firming that the circadian patterns for top cyclic genes defined in
controls were much weaker, if present at all, in MDD cases.

Sample-Sample Correlations Suggests Phase Shift in MDD Cases. We
used the top cyclic genes (n = 108) to calculate sample-sample
correlation in the DLPFC (Pearson’s r). There was a clear pos-
itive correlation among control samples with similar TODs and
a negative correlation among those with opposing TODs (Fig.
S9A). This pattern was much weaker among MDD cases (Fig.
S9B) or between cases and controls (Fig. S9C). The median
absolute r value was 0.185 among controls, and it was lower
among MDD cases (r = 0.140) and between cases and controls
(r = 0.138). The maintenance of positively and negatively cor-
related samples in the MDD group despite the loss of a predict-
able pattern of correlation based on TOD suggests that the
individual patients with MDD may continue to express a residual
pattern of circadian gene expression but are desynchronized from
the solar day (i.e., loss of normal circadian entrainment).
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Fig. S1. Seasonal variation of sunrise time. Shown is the distribution of sunrise time vs. calendar month for the 55 subjects included in our study. Data were
obtained from the online US Naval Observatory Data Services (http://aa.usno.navy.mil/data). The two red lines indicate the dates for switching to and away
from Daylight Savings Time in the year of the patient’s death.

Fig. S2. Simplified diagram of the interlocking transcriptional feedback loops underlying the mammalian circadian clock, highlighting transcripts that are
strongly rhythmic in the human brain according to the current study. This diagram is derived from models presented by Ukai-Tadenuma et al. (1) and Zhang
and Kay (2). Squares represent the three primary types of DNA binding sites involved in the transcriptional regulation of clock genes, and they are color-coded
as follows: E-box (pink), D-box (blue), and RRE (yellow). Ovals represent proteins that bind to these sites, and they were color-coded to match the three types of
binding sites. Transcript names are shown as text to the right of the occupied binding sites. Most transcripts in the diagram, shown in bold typeface, rank
among the top 50 rhythmic transcripts in the human brain according to our data. Black lines indicate transcriptional regulation, with arrow tips representing
activation and flat lines representing repression.

1. Ukai-Tadenuma M, Kasukawa T, Ueda HR (2008) Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol 10(10):1154–1163.
2. Zhang EE, Kay SA (2010) Clocks not winding down: Unravelling circadian networks. Nat Rev Mol Cell Biol 11(11):764–776.
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Fig. S3. Relative phasing of PER1–3 expression in prior studies of the rodent SCN resembles that seen in the human brain. Rodent data from the SCN shows
a “staggered” phase relationship between the Period genes (adapted from ref. 1), resembling the human data illustrated in Fig. 2B. Time is presented in ZT,
with ZT0 equivalent to the time of sunrise.

AnCg HC AMY NAcc CB
DLPFC 0.48 0.36 0.28 0.33 0.74
AnCg 0.33 0.52 0.07 0.57

HC 0.55 0.23 0.35
AMY 0.31 0.38
NAcc 0.55

A

B C

Fig. S4. Statistical significance correlates across brain regions in controls. (A) Spearman’s rank correlation coefficients of log-P values between pairs of regions
using 27 transcripts with the lowest median P values (<0.03) in the AnCg, DLPFC, HC, and NAcc, the four regions with the largest sample sizes. (B) Median rank
of the 500 most significant transcripts in the six regions for the actual data (black) and for 10 random permutations of P values (red). For each permutation,
observed P values for each region were randomly reassigned across all transcripts, and the median rank across six regions was calculated for each gene and
sorted, with the 500 highest ranked transcripts plotted as a red line. (C) Median rank of the next 500 most significant transcripts, after removing the 100 top
genes, for the actual data (black) and for 10 random permutations of P values (red), showing that the median ranks for the 101th to the 600th genes are similar
to those in random data.

1. Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96(2):271–290.
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Symbol Name DLPFC AnCg HC AMY NAcc CB
ARNTL* ARYL HYDROCARBON RECEPTOR NUCLEAR TRANSLOCATOR-LIKE PROTEIN -5 -4 -5 -6 -4 -5
PER2* PERIOD, DROSOPHILA, HOMOLOG OF, 2 9 8 7 8 12 6
PER3* PERIOD, DROSOPHILA, HOMOLOG OF, 3 6 5 6 6 5 3

NR1D1* NUCLEAR RECEPTOR SUBFAMILY 1, GROUP D, MEMBER 1 2 1 3 2 0
DBP* D SITE OF ALBUMIN PROMOTER-BINDING PROTEIN 5 5 6 6 5 2
SFPQ SPLICING FACTOR, PROLINE- AND GLUTAMINE-RICH 15 14 15 12
ITIH5 INTER-ALPHA-TRYPSIN INHIBITOR, HEAVY CHAIN 5 12 13 10 14 15
LDLR LOW DENSITY LIPOPROTEIN RECEPTOR 2 1 0 0

PER1* PERIOD, DROSOPHILA HOMOLOG OF, 1 3 1 1 2 3
INSIG1 INSULIN-INDUCED GENE 1 2 3 1 -2

SLC39A14 SOLUTE CARRIER FAMILY 39 (ZINC TRANSPORTER), MEMBER 14 0 1 3 3 2
NFIL3* NUCLEAR FACTOR, INTERLEUKIN 3-REGULATED -5 -4 -2
SNTB2 SYNTROPHIN, BETA-2 5 1 8 2

PDZRN3 PDZ DOMAIN-CONTAINING RING FINGER PROTEIN 3 3 2 5
BHLHE40* BASIC HELIX-LOOP-HELIX FAMILY, MEMBER E40 7 2 2
BHLHE41 BASIC HELIX-LOOP-HELIX FAMILY, MEMBER E41 4 5 4 3

HLF HEPATIC LEUKEMIA FACTOR 6 10 6
ETV5 ets variant gene 5 12 14 16 11 15
TNIP2 TNFAIP3-INTERACTING PROTEIN 2 3 2 0
ESYT1 extended synaptotagmin-like protein 1 6 3 3 3 4

ZNF394 zinc finger protein 394 6 1 3
PION pigeon homolog (Drosophila) 10 10 10
GPR6 G PROTEIN-COUPLED RECEPTOR 6 2 2 6

TIMM8A translocase of inner mitochondrial membrane 8 homolog A (yeast) -3 11 -4
GPR116 G protein-coupled receptor 116 12 9 12
FLRT1 fibronec�n leucine rich transmembrane protein 1 13 15 11

CSGALNACT1 chondroi�n sulfate N-acetylgalactosaminyltransferase 1 16 14 13 16
WDR41 WD repeat domain 41 10 10
APOLD1 APOLIPOPROTEIN L DOMAIN-CONTAINING 1 3 1 0 1

RHOB RAS HOMOLOG GENE FAMILY, MEMBER B -3 -1 -2 -1
SCML1 SEX COMB ON MIDLEG, DROSOPHILA, HOMOLOG-LIKE 1 0 1 3 0
SPRY4 SPROUTY, DROSOPHILA, HOMOLOG OF, 4 12 14 14 17
MTR 5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE S-METHYLTRANSFERASE 10 6 9

PLSCR1 PHOSPHOLIPID SCRAMBLASE 1 0 1 0
EXOC1 EXOCYST COMPLEX COMPONENT 1 16 12 17 12
KLF11 KRUPPEL-LIKE FACTOR 11 -2 0 0 -1

SLCO4A1 SOLUTE CARRIER ORGANIC ANION TRANSPORTER FAMILY, MEMBER 4A1 -1 1 1 0
SOCS2 SUPPRESSOR OF CYTOKINE SIGNALING 2 1 -1 1

C10orf116 adipogenesis regulatory factor 10 12 9
ZNF286A zinc finger protein 286A -5 11 7 10

GAS2 GROWTH ARREST-SPECIFIC 2 -1 -2 -2
UNC13A UNC13, C. ELEGANS, HOMOLOG OF, A 11 11
ATP4A ATPase, H+,K+ EXCHANGING, ALPHA SUBUNIT -5 10 6
RFC3 REPLICATION FACTOR C, SUBUNIT 3 2 8 12

ACOT13 acyl-CoA thioesterase 13 16 -5 15
C7orf68 HILPDA hypoxia inducible lipid droplet-associated 1 1 3
SYNM DESMUSLIN 4 4 3 8

HCRTR2 HYPOCRETIN RECEPTOR 2 11 10
ZW10 ZESTE-WHITE 10 1 2
NPAS2 NEURONAL PAS DOMAIN PROTEIN 2 17 -5

Fig. S5. Phase of top cyclic genes is consistent across brain regions in controls. Shown are the times of peak expression for the top 50 genes, with the genes
ordered by the average logged P value across six regions. Transcripts that were not significant (P > 0.1) in a given region are shown as blank. Phase is color-
coded, such that genes that peak in expression earliest in the early morning (−5, or 5 h before sunrise) are red and those peaking latest in the evening (1) are
green. Note that because our scale is linear but time itself is circular, a gene [e.g., ACOT13 (acyl-CoA thioesterase 13)] may peak right before midnight in one
region and right after midnight in another region, creating the artificial impression of large phase variation even though the actual peak times are only a few
hours apart.

1. Shedden K, Cooper S (2002) Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc Natl Acad Sci
USA 99(7):4379–4384.
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Fig. S6. Most significantly circadian genes in controls have the highest concordance of phase across brain regions, and the greatest rhythm amplitude. (A)
Circular variance (var) of peak time (x axis) vs. mean log P value (y axis) across six regions for the 445 genes with P < 0.05 in at least two regions. The same 445
genes were shown in Fig. 3 C and D. The top 50 genes shown in Fig. 3 were colored in red and exhibited smaller circular variance of peak time than other genes.
(B) 2D density heat map of log(Amplitude) (x axis) and log(P) (y axis) for all 11,979 transcripts in the DLPFC. The higher the amplitude, the more likely it was that
the transcript showed a significant P value. Colors correspond to the number of genes concentrated in any particular part of the diagram [high density (red),
low density (blue)].
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1. Yan J, Wang H, Liu Y, Shao C (2008) Analysis of gene regulatory networks in the mammalian circadian rhythm. PLOS Comput Biol 4(10):e1000193.
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Fig. S7. Top circadian genes overlap between mouse and human brain tissues. P values and mean peak times for mice were obtained from supplementary
table 2 of ref. 1. Comparisons of P values for ∼5,730 genes that overlapped between our study and that of Yan et al. (1) were made, with the 9 most significant
genes in our study highlighted in red, 6 of which had P < 0.01 in the mouse study. Six other genes had P < 1E-6 in the study by Yan et al. (1). Of these, 5 were
shown in the plot; the sixth had P < 1e-8 and was out of the displayed range; however, they were not significant in our study. Note that the P values for mice
were based on consistency across tissues using the circular range test rather than Fisher’s method of metaanalysis. Alternative names for BMAL1 and NR1D1 are
ARNTL and REV-ERBα, respectively.
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BA
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ED
DLPFC AnCG NACC HC DLPFC AnCG NACC HC

ARNTL 0.0005 0.001 0 0.007 0.121 0.072 0.005 0.732

PER2 0.005 0.006 0.064 0.181 0.015 0.083 0.075 0.213

PER3 0.003 0.009 0.056 0.217 0.42 0.652 0.29 0.432

NR1D1 0.0005 0.003 0 0.011 0.04 0.029 0.003 0.285

DBP 0.003 0.023 0.055 0.016 0.102 0.236 0.121 0.025

SFPQ 0.018 0.351 0.023 0.037 0.135 0.124 0.047 0.165

ITIH5 0.002 0.016 0.044 0.154 0.936 0.47 0.15 0.117

LDLR 0.032 0.026 0.073 0 0.012 0.385 0.005 0.315

PER1 0.001 0.006 0.075 0.002 0.006 0.21 0.124 0.137

INSIG1 0.009 0.041 0.841 0.002 0.056 0.534 0.318 0.668

SLC39A14 0.036 0.017 0.353 0.162 0.641 0.21 0.157 0.301

NFIL3* 0.072 0.049 0.146 0.077 0.565 0.326 0.179 0.633

SNTB2 0.688 0.069 0.111 0.222 0.928 0.194 0.365 0.123

PDZRN3 0.127 0.055 0.32 0.18 0.13 0.003 0.075 0.503

BHLHE40 0.003 0.057 0.138 0.152 0.19 0.897 0.14 0.433

BHLHE41 0.056 0.209 0.537 0.902 0.497 0.781 0.875 0.754
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Controls MDD pa�ents

Matched Controls MDD pa�ents

DLPFC AnCG NACC HC CB AMY DLPFC AnCG NACC HC CB AMY
ARNTL 0.41 0.36 0.37 0.23 0.47 0.28 0.18 0.16 0.26 0.10 0.25 0.24
PER2 0.43 0.30 0.25 0.25 0.53 0.27 0.47 0.24 0.27 0.20 0.25 0.26
PER3 0.49 0.45 0.43 0.53 0.51 0.27 0.22 0.13 0.31 0.29 0.20 0.02
NR1D1 0.47 0.32 0.40 0.25 0.48 0.24 0.36 0.27 0.42 0.13 0.36 0.35
DBP 0.39 0.34 0.39 0.31 0.48 0.18 0.27 0.17 0.34 0.32 0.59 0.12
SFPQ 0.28 0.09 0.28 0.25 0.37 0.15 0.25 0.19 0.30 0.22 0.40 0.26
ITIH5 0.34 0.22 0.26 0.25 0.19 0.18 0.06 0.16 0.37 0.38 0.06 0.22
LDLR 0.22 0.21 0.05 0.21 0.21 0.21 0.24 0.09 0.16 0.11 0.52 0.21
PER1 0.36 0.18 0.16 0.21 0.23 0.10 0.30 0.17 0.14 0.18 0.35 0.11
INSIG1 0.31 0.26 0.07 0.29 0.25 0.36 0.32 0.13 0.14 0.08 0.11 0.16
SLC39A14 0.26 0.38 0.26 0.44 0.18 0.42 0.15 0.24 0.43 0.41 0.15 0.15
NFIL3* 0.46 0.51 0.37 0.38 0.38 0.46 0.18 0.20 0.35 0.17 0.23 0.23
SNTB2 0.23 0.22 0.19 0.19 0.11 0.36 0.05 0.16 0.13 0.33 0.33 0.18
PDZRN3 0.40 0.39 0.10 0.38 0.11 0.21 0.42 0.56 0.26 0.38 0.19 0.44
BHLHE40 0.40 0.24 0.23 0.25 0.22 0.17 0.24 0.07 0.28 0.27 0.41 0.11
BHLHE41 0.42 0.38 0.25 0.01 0.41 0.12 0.22 0.12 0.09 0.18 0.30 0.38

Fig. S8. Decreased circadian rhythmicity in the MDD group cannot be explained by smaller sample size or lack of overall variation in expression levels. (A and
B) Overall, MDD cases have lower circadian amplitude than controls. Illustrated is the amplitude for the top 16 genes (previously shown in Fig. 2A) in controls
(A) and in MDD cases (B), with higher amplitudes coded in red and lower amplitudes in blue. Cycle amplitude was defined as the range between the maximum
and minimum of the best-fitting sinusoidal curve on a log2 scale. (C) MDD cases and controls exhibit a similar amount of variation in gene expression levels.
Shown is a comparison of the variance for the top 100 genes between controls (x axis) and MDD cases (y axis). The black straight line has a slope of 1. The gene
with the largest variance (Upper Right) is apolipoprotein L domain containing 1 (APOLD1). (D and E) Small sample size cannot explain the lack of significant
rhythmicity in the MDD group. Shown are the P values of the top 16 genes as in Fig. 2A, except that the controls have been selected to have an equal sample
size as cases and have matched distributions of TOD. Only four regions were analyzed, because the AMY and CB contain fewer cases (n = 13 and n = 14,
respectively).
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Fig. S9. Control, but not MDD, samples with a similar TOD exhibit correlated gene expression levels. Shown is a sample-sample correlation matrix (shown as
heat maps) for 52 controls and 33 MDD cases in the DLPFC, using 108 genes with P < 0.005. Shown are the control-control matrix (A), the MDD-MDD matrix (B),
and the control-MDD matrix (C). R values are illustrated using color, with red indicating a positive correlation (R = 0.4) and blue indicating a negative cor-
relation (R = −0.4).

Table S1. Enrichment analysis of ranked P values for cyclic patterns

Name Concept type P value FDR Direction

Rhythmic process GO biological process 4.12E-13 1.20E-09 Enriched
Circadian rhythm GO biological process 3.15E-12 4.57E-09 Enriched
Circadian rhythm-mammal KEGG pathway 2.62E-10 5.51E-08 Enriched
PAS fold pFAM 5.63E-10 1.63E-07 Enriched
Basic region leucine zipper pFAM 6.05E-07 8.77E-05 Enriched
Sequence-specific DNA binding transcription

factor activity
GO molecular function 7.16E-06 0.0046 Enriched

Helix–loop–helix DNA-binding domain pFAM 6.72E-05 0.0065 Enriched

Combined P values across six regions using Fisher’s method for all transcripts were analyzed by LRpath (http://lrpath.ncibi.org). This
method computes enrichment ratios for Biocarta, Gene Ontology (GO), KEGG, and Panther pathways, and reports enrichment P values,
false-discovery rate (FDR), and whether the direction is enrichment or depletion. Shown are the pathways with FDR < 0.05. pFAM,
Protein Family Database.

Li et al. www.pnas.org/cgi/content/short/1305814110 12 of 14

http://lrpath.ncibi.org
www.pnas.org/cgi/content/short/1305814110


Table S2. Demographic and clinical information for 34 patients with MDD

Case no. pH Sex Ethnicity Cause of death Age, y Toxicology screen results TOD

56 7.13 F Caucasian Suicide, FCO 72 Pos: propoxyphene (Darvon) 9.5
57 7.11 M Caucasian Suicide, asphyxiation* 19 Pos: methamphetamine, amphetamine 14.7
58 6.93 M Caucasian Suicide, asphyxiation* 58 Pos: fluoxetine (Prozac; D) 7.2
59 6.82 M Caucasian Natural, cardiac 52 Pos: fluoxetine (Prozac; D) 1.2
60 7.19 M Caucasian Suicide, asphyxiation* 49 Neg 5.5
61 6.91 M Caucasian Natural, cardiac* 46 Pos: diazepam (Valium), chlordiazepoxide (Librium),

phenobarbital (D)
6.3

62 7.00 M Caucasian FCO 49 Pos: propoxyphene (Darvon), amitriptyline
(Elavil; D), sertraline (Zoloft; D), zolpidem (Ambien; D)

−1.1

63 6.79 M Caucasian Suicide, asphyxiation* 39 Neg 3.5
64 7.04 M Caucasian Accident, asphyxiation* 35 Neg 8.6
65 6.59 F Caucasian Natural, cardiac 50 Pos: citalopram (Celexa; D) −1.0
66 7.25 M Caucasian Suicide, asphyxiation* 47 Neg 3.3
67 6.68 F Caucasian Natural, cardiac 80 Pos: phenobarbital (D), butalbital (Axocet; D),

doxylamine (Unisom; D)
−2.1

68 7.17 M Caucasian Natural, cardiac* 63 Neg 4.9
69 6.87 M Caucasian FCO 36 Pos: propoxyphene (Darvon) hydrocodone

(Vicodin; D), clonazepam (Klonopin; D)
−4.7

70 7.05 M Caucasian Natural, cardiac 66 Neg 11.2
71 7.06 M Caucasian Suicide, asphyxiation* 19 Pos: tetrahydrocannabinol (D) 5.6
77 7.07 M Caucasian Suicide, asphyxiation* 28 Neg 6.0
78 7.06 F Caucasian Natural, cardiac 44 Pos: lidocaine (D) 6.5
79 7.16 F Caucasian Suicide, GSW* 53 Pos: sertraline (Zoloft; D) 15.3
80 6.90 M Caucasian Suicide, asphyxiation* 56 Pos: paroxetine (Paxil; D) −1.7
81 7.13 M Caucasian Suicide, asphyxiation* 34 Neg 5.9
82 6.76 F Caucasian Suicide, asphyxiation* 46 Pos: carbamazepine (Tegretol; D), diphenhydramine

(Benedryl; D), alprazolam (Xanax; D)
3.3

83 6.58 M Caucasian Suicide, GSW* 52 Neg 8.6
84 7.39 F Caucasian FCO 46 Pos: doxylamine (Unisom), propoxyphene

(Darvon), mirtazapine (Remeron), citalopram
(Celexa), fentanyl citrate (Fentanyl), carisoprodol
(Soma; D), atropine (D), promethazine
(Phenergan; D), hydroxyzine (Vistaril; D)

0.9

85 6.99 M Caucasian Suicide, asphyxiation* 40 Pos: O-desmethylvenlafaxine (Pristiq) 4.9
86 6.84 M Caucasian Natural, cardiac 50 Pos: fluoxetine (Prozac; D) 4.7
87 7.18 M Caucasian Suicide, asphyxiation* 39 Pos: cocaine (D), hydrocodone (Vicodin; D) 3.2
88 6.40 M Caucasian Natural, cardiac 77 Neg 12.0
89 7.16 M Caucasian Suicide, asphyxiation* 24 Neg 2.9
90 6.51 M Caucasian Suicide, GSW 34 Neg 9.5
91 6.33 M Caucasian Suicide, asphyxiation* 29 Neg 11.2
92 6.47 M Caucasian Natural, cardiac* 62 Neg 2.2
93 6.41 M Caucasian Natural, cardiac* 48 Pos: sertraline (Zoloft; D) 8.6
94 7.00 M Asian Suicide, asphyxiation* 31 Neg 3.6

D, detected treatment medications within therapeutic levels; FCO, fatal concentration overdose; GSW, gunshot wound; Pos, positive; Neg, negative.
*Unwitnessed death (for methodology of estimating TOD for unwitnessed death, see SI Materials and Methods, TOD and Zeitgeber Time).

Table S3. Counts of samples and microarrays analyzed in this
study

Samples and
microarrays AnCg DLPFC CB AMY HC NAcc Total

All U133A microarrays 283 367 162 135 236 293 1,476
Filtered microarrays 277 337 160 135 229 286 1,424
Filtered and for controls 124 161 79 62 108 136 546
Unique samples* 153 172 104 70 137 140 776
Controls† 70 83 51 32 63 66 365
Controls with TOD 55 52 34 29 48 51 269
MDD cases with TOD 34 33 14 13 32 29 155

*Counts for “Filtered 133A microarrays” contain duplicate microarrays for
most samples; hence, the counts for “Unique samples” are smaller.
†
“Unique samples” consist of controls and patients with mental disorders.
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Table S4. Demographic and clinical information for the 55 controls

Subject no. pH Sex Ethnicity Cause of death Age, y TOD

1 7.13 M Caucasian Cardiac* 64 −0.6
2 6.5 M Caucasian Cardiac 63 −0.6
3 6.4 M African American Cardiac 59 0.9
4 6.53 M Caucasian Cardiac 52 −5.0
5 6.58 M Caucasian Cardiac 58 12.2
6 6.63 M Caucasian Blunt force trauma 78 9.9
7 7.11 F Caucasian Exsanguination 62 11.7
8 7.04 M Caucasian Blunt force trauma 32 −1.9
9 7 M Caucasian Cardiac 79 11.5
10 n/a M Caucasian Cardiac 55 7.3
11 7.15 M Caucasian Cardiac 30 14.1
12 6.76 M Caucasian Cardiac 77 8.7
13 6.96 M Caucasian Cardiac* 67 −4.8
14 7.14 M Caucasian Blunt force trauma 56 12.2
15 7.21 F Caucasian Cardiac 73 14.8
16 7.25 M Caucasian Cardiac 63 9.7
17 7.18 M Caucasian Cardiac 75 0.3
18 7.12 M Caucasian Exsanguination 69 5.2
19 6.55 F Caucasian Cardiac 68 3.6
20 7.18 M Caucasian Cardiac 55 2.4
21 7.05 F Caucasian Blunt force trauma 45 16.8
22 6.59 M Caucasian Cardiac 69 12.6
23 6.88 M Caucasian Cardiac 63 7.9
24 6.94 M Caucasian Cardiac* 66 16.9
25 6.85 M Caucasian Cardiac 56 7.7
26 6.59 M Caucasian Cardiac 60 2.3
27 6.6 F Caucasian Pulmonary embolism 45 11.8
28 6.98 M Caucasian Cardiac 56 −3.0
29 6.68 M Caucasian Cardiac* 49 2.2
30 7.07 M Caucasian Cardiac* 40 −4.3
31 7.21 F Caucasian Pulmonary insufficiency 74 17.1
32 6.88 M African American Hemorrhagic pericarditis and

epicarditis
65 5.0

33 7.01 M Caucasian Cardiac 41 12.2
34 7.02 M Caucasian Electrocution* 39 11.5
35 6.69 M Caucasian Cardiac 67 −3.6
36 6.9 F Caucasian Exsanguination 70 12.9
37 6.76 M Caucasian Cardiac 35 2.3
38 6.3 F Asian Cardiac 47 14.9
39 6.64 M Caucasian Cardiac 53 1.3
40 6.81 M Pacific Islander Cardiac 39 14.2
41 6.87 M Caucasian Cardiac 44 −6.0
42 6.97 M Caucasian Electrocution 32 7.3
43 6.62 M Caucasian Cardiac 77 7.0
44 7.03 M Caucasian Cardiac* 70 5.1
45 6.61 M Caucasian Cardiac 54 7.7
46 6.99 F Caucasian Cardiac* 60 10.5
47 6.6 M Caucasian Cardiac 50 4.7
48 6.86 M Caucasian Cardiac 45 11.7
49 7.1 M Asian Cardiac 43 9.9
50 6.79 M Caucasian Cardiac 48 13.2
51 7.02 M Caucasian Cardiac 58 9.1
52 6.89 M Caucasian Cardiac 55 14.5
53 6.83 F Caucasian Cardiac 64 13.4
54 6.97 M Caucasian Drowning 18 12.2
55 6.76 M Caucasian Glomerulonephritis 40 3.1

Sunrise time was designated as TOD = 0, with a range of −6 to 18 h indicating 6 h before and 18 h after
sunrise. Sunrise time was adjusted for season (Fig. S1). All subjects had an AFS of 0, indicating rapid death
occurring within 1 h. F, female; M, male; n/a, not available; pH, brain tissue pH.
*Unwitnessed death.
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